Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 886
Filtrar
1.
Artif Cells Nanomed Biotechnol ; 51(1): 192-204, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37052886

RESUMO

Bee propolis has been used in alternative medicine to treat various diseases. Due to its limited water solubility, it is often used in combination with alcohol solvents, causing skin irritation and immune response. To solve this, the new drug delivery system, based on the lipid nanodiscs of 1,2-dimyristoyl-sn-glycero-3-phosphochline (DMPC) and poly(styrene-alt-maleic acid) (PSMA), were created in an aqueous media. At the excess polymer concentrations, the PSMA/DMPC complexation produced the very fine nanoparticles (18 nm). With the increased molar ratio of styrene to maleic acid (St/MA) in the copolymer structure, the lipid nanodisc showed the improved encapsulation efficiency (EE%), comparing to their corresponding aqueous formulations. The maximum value had reached to around 20% when using the 2:1 PSMA precursor. Based on the cytotoxicity test, these nanoparticles were considered to be non-toxic over the low dose administration region (<78 µg/mL). Instead, they possessed the ability to promote the Vero cell growth. The new PSMA/DMPC nanovesicles could thus be used to improve aqueous solubility and therapeutic effects of poorly water-soluble drugs, thus extending their use in modern therapies.


New biomimetic approach for propolis encapsulation was developed with no use of organic solvent.Propolis antioxidants were recovered directly into water-soluble formats.The very fine lipid nanodiscs showed impressive shelf-life stability and tuneable drug-loading capacity.


Assuntos
Própole , Própole/farmacologia , Dimiristoilfosfatidilcolina/química , Poliestirenos/química , Maleatos/química , Polímeros/química , Água
2.
Biomacromolecules ; 24(4): 1819-1838, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36947865

RESUMO

Amphipathic styrene-maleic acid (SMA) copolymers directly solubilize biomembranes into SMA-lipid particles, or SMALPs, that are often regarded as nanodiscs and hailed as a native membrane platform. The promising outlook of SMALPs inspires the discovery of many SMA-like copolymers that also solubilize biomembranes into putative nanodiscs, but a fundamental question remains on how much the SMALPs or SMALP analogues truly resemble the bilayer structure of nanodiscs. This unfortunate ambiguity undermines the utility of SMA or SMA-like copolymers in membrane biology because the structure and function of many membrane proteins depend critically on their surrounding matrices. Here, we report the structural heterogeneity of SMALPs revealed through fractionating SMALPs comprised of lipids and well-defined SMAs via size-exclusion chromatography followed by quantitative determination of the polymer-to-lipid (P/L) stoichiometric ratios in individual fractions. Through the lens of P/L stoichiometric ratios, different self-assembled polymer-lipid nanostructures are inferred, such as polymer-remodeled liposomes, polymer-encased nanodiscs, polymer-lipid mixed micelles, and lipid-doped polymer micellar aggregates. We attribute the structural heterogeneity of SMALPs to the microstructure variations amongst individual polymer chains that give rise to their polydisperse detergency. As an example, we demonstrate that SMAs with a similar S/MA ratio but different chain sizes participate preferentially in different polymer-lipid nanostructures. We further demonstrate that proteorhodopsin, a light-driven proton pump solubilized within the same SMALPs is distributed amongst different self-assembled nanostructures to display different photocycle kinetics. Our discovery challenges the native nanodisc notion of SMALPs or SMALP analogues and highlights the necessity to separate and identify the structurally dissimilar polymer-lipid particles in membrane biology studies.


Assuntos
Polímeros , Poliestirenos , Polímeros/química , Poliestirenos/química , Proteínas de Membrana/química , Lipídeos/química , Maleatos/química , Bicamadas Lipídicas/química
3.
Biol Chem ; 404(7): 703-713, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36921292

RESUMO

Polymer-encapsulated nanodiscs enable membrane proteins to be investigated within a native-like lipid-bilayer environment. Unlike other bilayer-based membrane mimetics, these nanodiscs are equilibrium structures that permit lipid exchange on experimentally relevant timescales. Therefore, examining the kinetics and mechanisms of lipid exchange is of great interest. Since the high charge densities of existing anionic polymers can interfere with protein-protein and protein-lipid interactions as well as charge-sensitive analysis techniques, electroneutral nanodisc-forming polymers have been recently introduced. However, it has remained unclear how the electroneutrality of these polymers affects the lipid-exchange behavior of the nanodiscs. Here, we use time-resolved Förster resonance energy transfer to study the kinetics and the mechanisms of lipid exchange among nanodiscs formed by the electroneutral polymer Sulfo-DIBMA. We also examine the role of coulombic repulsion and specific counterion association in lipid exchange. Our results show that Sulfo-DIBMA nanodiscs exchange lipids on a similar timescale as DIBMA nanodiscs. In contrast with nanodiscs made from polyanionic DIBMA, however, the presence of mono- and divalent cations does not influence lipid exchange among Sulfo-DIBMA nanodiscs, as expected from their electroneutrality. The robustness of Sulfo-DIBMA nanodiscs against varying ion concentrations opens new possibilities for investigating charge-sensitive processes involving membrane proteins.


Assuntos
Maleatos , Nanoestruturas , Maleatos/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Polímeros/química , Nanoestruturas/química
4.
Biophys Chem ; 296: 106989, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898346

RESUMO

An advantageous alternative to the use of detergents in biochemical studies on membrane proteins are the recently developed styrene-maleic acid (SMA) amphipathic copolymers. In our recent study [1] we demonstrated that using this approach, most T cell membrane proteins were fully solubilized (presumably in small nanodiscs), while two types of raft proteins, GPI-anchored proteins and Src family kinases, were mostly present in much larger (>250 nm) membrane fragments markedly enriched in typical raft lipids, cholesterol and lipids containing saturated fatty acid residues. In the present study we demonstrate that disintegration of membranes of several other cell types by means of SMA copolymer follows a similar pattern and we provide a detailed proteomic and lipidomic characterization of these SMA-resistant membrane fragments (SRMs).


Assuntos
Poliestirenos , Proteômica , Poliestirenos/química , Maleatos/análise , Maleatos/química , Proteínas de Membrana/química , Ácidos Graxos/análise , Microdomínios da Membrana , Membrana Celular/química
5.
Langmuir ; 39(6): 2450-2459, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724350

RESUMO

Membrane proteins are an essential part of signaling and transport processes and are targeted by multiple drugs. To isolate and investigate them in their native state, polymer-bounded nanodiscs have become valuable tools. In this study, we investigate the lipid model system dimyristoyl-phosphocholine (DMPC) with the nanodisc-forming copolymers styrene maleic acid (SMA) and diisobutylene maleic acid (DIBMA). Using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS), we studied the influence of polymer concentration and temperature on the nanodisc structure. In Tris buffer, the size of nanodiscs formed with SMA is smaller compared to DIBMA at the same polymer ratio. In both cases, the size decreases monotonically with increasing polymer concentration, and this effect is more pronounced when using SMA. Measurements at temperatures (T) between 5 and 30 °C in phosphate buffer showed an incomplete solubilization at high T even at polymer/lipid ratios above that required for complete lipid solubilization. For DIBMA, the nanodiscs developed at lower temperatures are stable and the net repulsion increases, while for SMA, the individual nanodiscs possess smaller sizes and are less affected by T. However, using DLS, one can observe SMA agglomerates at low T. Interestingly, for both polymers, no drastic changes of the observable parameters (radius and bilayer thickness) are seen upon cooling, which would indicate a sharp (first-order) phase transition from liquid-crystalline to gel, but only gradual changes. Hence, we conclude that the transition from a gel toward a liquid-crystalline lipid phase proceeds over a broad T-range compared to a continuous lipid bilayer. These results can pave the way toward the development of better protocols for studying membrane proteins stabilized in this type of membrane mimics.


Assuntos
Nanoestruturas , Nanoestruturas/química , Polímeros/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Bicamadas Lipídicas/química , Maleatos/química , Proteínas de Membrana/química , Estireno/química
6.
Langmuir ; 39(10): 3569-3579, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36854196

RESUMO

Different amphiphilic co-polymers have been introduced to produce polymer-lipid particles with nanodisc structure composed of an inner lipid bilayer and polymer chains self-assembled as an outer belt. These particles can be used to stabilize membrane proteins in solution and enable their characterization by means of biophysical methods, including small-angle X-ray scattering (SAXS). Some of these co-polymers have also been used to directly extract membrane proteins together with their associated lipids from native membranes. Styrene/maleic acid and diisobutylene/maleic acid are among the most commonly used co-polymers for producing polymer-lipid particles, named SMALPs and DIBMALPs, respectively. Recently, a new co-polymer, named Glyco-DIBMA, was produced by partial amidation of DIBMA with the amino sugar N-methyl-d-glucosamine. Polymer-lipid particles produced with Glyco-DIBMA, named Glyco-DIBMALPs, exhibit improved structural properties and stability compared to those of SMALPs and DIBMALPs while retaining the capability of directly extracting membrane proteins from native membranes. Here, we characterize the structure and lipid composition of Glyco-DIBMALPs produced with either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Glyco-DIBMALPs were also prepared with mixtures of either POPC or DMPC and cholesterol at different mole fractions. We estimated the lipid content in the Glyco-DIBMALPs and determined the particle structure and morphology by SAXS. We show that the Glyco-DIBMALPs are nanodisc-like particles whose size and shape depend on the polymer/lipid ratio. This is relevant for designing nanodisc particles with a tunable diameter according to the size of the membrane protein to be incorporated. We also report that the addition of >20 mol % cholesterol strongly perturbed the formation of Glyco-DIBMALPs. Altogether, we describe a detailed characterization of the Glyco-DIBMALPs, which provides relevant inputs for future application of these particles in the biophysical investigation of membrane proteins.


Assuntos
Dimiristoilfosfatidilcolina , Bicamadas Lipídicas , Dimiristoilfosfatidilcolina/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Bicamadas Lipídicas/química , Maleatos/química , Polímeros/química , Proteínas de Membrana/química , Colesterol/química
7.
Biophys J ; 122(11): 2256-2266, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36641625

RESUMO

Discoidal lipid-protein nanoparticles known as nanodiscs are widely used tools in structural and membrane biology. Amphipathic, synthetic copolymers have recently become an attractive alternative to membrane scaffold proteins for the formation of nanodiscs. Such copolymers can directly intercalate into, and form nanodiscs from, intact membranes without detergents. Although these copolymer nanodiscs can extract native membrane lipids, it remains unclear whether native membrane properties are also retained. To determine the extent to which bilayer lipid packing is retained in nanodiscs, we measured the behavior of packing-sensitive fluorescent dyes in various nanodisc preparations compared with intact lipid bilayers. We analyzed styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and polymethacrylate (PMA) as nanodisc scaffolds at various copolymer-to-lipid ratios and temperatures. Measurements of Laurdan spectral shifts revealed that dimyristoyl-phosphatidylcholine (DMPC) nanodiscs had increased lipid headgroup packing compared with large unilamellar vesicles (LUVs) above the lipid melting temperature for all three copolymers. Similar effects were observed for DMPC nanodiscs stabilized by membrane scaffolding protein MSP1E1. Increased lipid headgroup packing was also observed when comparing nanodiscs with intact membranes composed of binary mixtures of 1-palmitoyl-2-oleoyl-phosphocholine (POPC) and di-palmitoyl-phosphocholine (DPPC), which show fluid-gel-phase coexistence. Similarly, Laurdan reported increased headgroup packing in nanodiscs for biomimetic mixtures containing cholesterol, most notable for relatively disordered membranes. The magnitudes of these ordering effects were not identical for the various copolymers, with SMA being the most and DIBMA being the least perturbing. Finally, nanodiscs derived from mammalian cell membranes showed similarly increased lipid headgroup packing. We conclude that nanodiscs generally do not completely retain the physical properties of intact membranes.


Assuntos
Dimiristoilfosfatidilcolina , Nanoestruturas , Animais , Fosforilcolina , Bicamadas Lipídicas/química , Maleatos/química , Polímeros/química , Proteínas de Membrana/química , Estireno , Lipossomas Unilamelares , Nanoestruturas/química , Mamíferos
8.
PLoS One ; 18(1): e0280074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36608027

RESUMO

Membrane proteins of Mycobacterium tuberculosis (Mtb) can be targeted for the development of therapeutic and prophylactic interventions against tuberculosis. We have utilized the unique membrane-solubilising properties of the styrene maleic acid copolymer (SMA) to prepare and characterise 'styrene maleic acid lipid particles' from the native membrane of Mtb (MtM-SMALPs). When resolved by SDS-PAGE and visualised with coomassie blue, the molecular weights of Mtb membrane (MtM) proteins solubilised by SMA were mostly in the range of 40-70 kDa. When visualised by transmission electron microscopy, MtM-SMALPs appeared as nanoparticles of discrete shapes and sizes. The discoid nanoparticles exhibited a range of diameters of ~10-90 nm, with largest portion (~61%) ranging from 20-40 nm. MtM proteins of a molecular weight-range overlapping with that of MtM-SMALPs were also amenable to chemical cross-linking, revealing protein complex formation. Characterisation using monoclonal antibodies against seven MtM-associated antigens confirmed the incorporation of the inner membrane protein PRA, membrane-associated proteins PstS1, LpqH and Ag85, and the lipoglycan LAM into MtM-SMALPs. Conversely, the peripheral membrane proteins Acr and PspA were nearly completely excluded. Furthermore, although MtM showed an abundance of Con A-binding glycoproteins, MtM-SMALPs appeared devoid of these species. Immune responses of healthcare workers harbouring 'latent TB infection' provided additional insights. While MtM-SMALPs and MtM induced comparable levels of the cytokine IFN-γ, only MtM-SMALPs could induce the production of TNF-α. Antibodies present in the donor sera showed significantly higher binding to MtM than to MtM-SMALPs. These results have implications for the development of MtM-based immunoprophylaxis against tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Estireno/química , Membrana Celular/química , Poliestirenos/química , Maleatos/análise , Maleatos/química , Proteínas de Membrana/química , Tuberculose/prevenção & controle , Lipídeos/química , Bicamadas Lipídicas/química
9.
Eur J Med Chem ; 246: 114993, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495631

RESUMO

Solubility-driven optimization of the salts of nitro benzothiopyranone 1, which targets DprE1, led to an antimycobacterial preclinical candidate 2. Five pharmaceutically acceptable salts, including the maleate (2), fumarate (3), citrate (4, 5), and l-malate (6) of compound 1, were prepared via the salt formation reaction and evaluated for their physicochemical and pharmacokinetic properties. Compared with 1, all the target salts exhibited greatly increased aqueous solubility and improved oral bioavailability in mice. Maleate salt 2, which displayed higher chemical stability and lower log P, showed substantially improved bioavailability in rats and a much better in vivo effect compared with free base 1 at the same dose. The X-ray crystal structure of 2 revealed that the exposed hydrophilic piperazine-maleate moiety in the crystal structure cell may be critical in increasing the solubility of 2. Thus, this maleate salt 2 overcame the poor druggability of benzothiopyranone derivatives and was identified as a promising preclinical candidate for treating tuberculosis.


Assuntos
Mycobacterium tuberculosis , Animais , Camundongos , Ratos , Maleatos/química , Maleatos/farmacologia , Piperazina/farmacologia , Sais/química , Solubilidade , Fumaratos/química , Fumaratos/farmacologia
10.
Anal Chem ; 94(41): 14151-14158, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36200347

RESUMO

One of the biggest challenges in membrane protein (MP) research is to secure physiologically relevant structural and functional information after extracting MPs from their native membrane. Amphipathic polymers represent attractive alternatives to detergents for stabilizing MPs in aqueous solutions. The predominant polymers used in MP biochemistry and biophysics are amphipols (APols), one class of which, styrene maleic acid (SMA) copolymers and their derivatives, has proven particularly efficient at MP extraction. In order to examine the relationship between the chemical structure of the polymers and their ability to extract MPs from membranes, we have developed two novel classes of APols bearing either cycloalkane or aryl (aromatic) rings, named CyclAPols and ArylAPols, respectively. The effect on solubilization of such parameters as the density of hydrophobic groups, the number of carbon atoms and their arrangement in the hydrophobic moieties, as well as the charge density of the polymers was evaluated. The membrane-solubilizing efficiency of the SMAs, CyclAPols, and ArylAPols was compared using as models (i) two MPs, BmrA and a GFP-fused version of LacY, overexpressed in the inner membrane of Escherichia coli, and (ii) bacteriorhodopsin, naturally expressed in the purple membrane of Halobacterium salinarum. This analysis shows that, as compared to SMAs, the novel APols feature an improved efficiency at extracting MPs while preserving native protein-lipid interactions.


Assuntos
Bacteriorodopsinas , Cicloparafinas , Carbono , Detergentes/química , Lipídeos , Maleatos/química , Polímeros/química , Poliestirenos/química
11.
Biomacromolecules ; 23(11): 4749-4755, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36219772

RESUMO

The detergent-free extraction of integral membrane proteins using styrene-maleic acid copolymers (SMAs) has shown promise as a potentially effective technique to isolate proteins in a more native-like conformation. As the field continues to develop, the protein selectivity and extraction efficiency of many analogues of traditional SMAs are being investigated. Recently, we discovered that the monoesterification of SMAs with alkoxy ethoxylate sidechains drastically affects the bioactivity of these copolymers in the extraction of photosystem I from the cyanobacterium Thermosynechococcus elongatus. However, subsequent investigations also revealed that the conditions under which these esterified SMA polymer analogues are prepared, purified, and stored can alter the structure of the alkoxy ethoxylate-functionalized SMA and perturb the protein extraction process. Herein, we demonstrate that the basic conditions required to solubilize SMA analogues may lead to deleterious saponification side reactions, cleaving the sidechains of an esterified SMA and dramatically decreasing its efficacy for protein extraction. We found that this process is highly dependent on temperature, with polymer samples being prepared and stored at lower temperatures exhibiting significantly fewer saponification side reactions. Furthermore, the effects of small-molecule impurities and exposure to light were also investigated, both of which are shown to have significant effects on the polymer structure and/or protein extraction process.


Assuntos
Maleatos , Proteínas de Membrana , Proteínas de Membrana/química , Maleatos/química , Poliestirenos/química , Polímeros/química
12.
Small ; 18(47): e2202492, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228092

RESUMO

Membrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques. Thus, the authors aim to fabricate electroneutral-yet water-soluble-polymer nanodiscs. By attaching a sulfobetaine group to the commercial polymers DIBMA and SMA(2:1), these polyanionic polymers are converted to the electroneutral maleimide derivatives, Sulfo-DIBMA and Sulfo-SMA(2:1). Sulfo-DIBMA and Sulfo-SMA(2:1) readily extract proteins and phospholipids from artificial and cellular membranes to form nanodiscs. Crucially, the electroneutral nanodiscs avert unspecific interactions, thereby enabling new insights into protein-lipid interactions through lab-on-a-chip detection and in vitro translation of membrane proteins. Finally, the authors create a library comprising thousands of human membrane proteins and use proteome profiling by mass spectrometry to show that protein complexes are preserved in electroneutral nanodiscs.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Humanos , Bicamadas Lipídicas/química , Polímeros/química , Maleatos/química , Proteínas de Membrana/química , Nanoestruturas/química
13.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35682979

RESUMO

The study of the formation of microstructures during the interaction of a protonated drug-like compound (API) with a maleic acid monoanion sheds light on the assembly processes in an aqueous solution at the molecular level. Molecular dynamics (MD) simulations coupled with density functional theory (DFT) calculations made it possible to find initial hydrogen bonding motifs during the assembly process, leading to the formation of heterodimers and trimers. The process of trimer formation [protonated API-maleic acid monoanion-protonated API] proceeds through the formation of three intermolecular H-bonds by the CO2- group of the maleic acid monoanion in both systems. The total enthalpy/energy of these H-bonds is more than 70 kJ/mol. Thus, the maleic acid monoanion plays a key role in the processes of association in aqueous solution, and the interaction of the maleic acid monoanion with API is more preferable than the interaction of API molecules with each other. DFT computations in the discrete continuum approximation reveal the spectral features of heterodimers and trimers, and the ATR-IR spectra confirmed these findings. MD simulations followed by DFT calculations made it possible to describe the initial stages of the formation of pharmaceutical cocrystals in an aqueous solution.


Assuntos
Simulação de Dinâmica Molecular , Sais , Ligação de Hidrogênio , Maleatos/química , Soluções , Água/química
14.
J Colloid Interface Sci ; 625: 220-236, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35716617

RESUMO

HYPOTHESIS: Self-assembly of amphipathic styrene maleic acid copolymers with phospholipids in aqueous solution results in the formation of 'nanodiscs' containing a planar segment of phospholipid bilayer encapsulated by a polymer belt. Recently, studies have reported that lipids rapidly exchange between both nanodiscs in solution and external sources of lipids. Outstanding questions remain regarding details of polymer-lipid interactions, factors influencing lipid exchange and structural effects of such exchange processes. Here, the dynamic behaviour of nanodiscs is investigated, specifically the role of membrane charge and polymer chemistry. EXPERIMENTS: Two model systems are investigated: fluorescently labelled phospholipid vesicles, and Langmuir monolayers of phospholipids. Using fluorescence spectroscopy and time-resolved neutron reflectometry, the membrane potential, monolayer structure and composition are monitored with respect to time upon polymer and nanodisc interactions. FINDINGS: In the presence of external lipids, polymer chains embed throughout lipid membranes, the extent of which is governed by the net membrane charge. Nanodiscs stabilised by three different polymers will all exchange lipids and polymer with monolayers to differing extents, related to the properties of the stabilising polymer belt. These results demonstrate the dynamic nature of nanodiscs which interact with the local environment and are likely to deposit both lipids and polymer at all stages of use.


Assuntos
Nanoestruturas , Fosfolipídeos , Bicamadas Lipídicas/química , Maleatos/química , Nanoestruturas/química , Fosfolipídeos/química , Polímeros/química , Estireno
15.
Anal Biochem ; 647: 114692, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35461801

RESUMO

Despite the important role of membrane proteins in biological function and physiology, studying them remains challenging because of limited biomimetic systems for the protein to remain in its native membrane environment. Cryo electron microscopy (Cryo-EM) is emerging as a powerful tool for analyzing the structure of membrane proteins. However, Cryo-EM and other membrane protein analyses are better studied in a native lipid bilayer. Although traditional, mimetic systems have disadvantages that limit their use in the study of membrane proteins. As an alternative, styrene-maleic acid copolymers are used to form nanoparticles with POPC:POPG lipids. Traditional characterization of these styrene maleic acid lipid nanoparticles (SMALPs) includes dynamic light scattering (DLS), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM). In this study a new method was developed that utilizes SMALPs using a styrene-maleic acid copolymer (SMA) thin film on a TEM grid, acting as a substrate. By directly adding POPC:POPG lipid vesicles to the SMA coated grid SMALPs can be formed, visualized, and characterized by TEM without the need to make them in solution prior to imaging. We envision these functionalized grids could aid in single particle specimen preparation, increasing the efficiency of structural biology and biophysical techniques such as Cryo-EM.


Assuntos
Maleatos , Nanopartículas , Lipossomos , Maleatos/química , Proteínas de Membrana/química , Nanopartículas/química
16.
Biomacromolecules ; 23(3): 743-759, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-34994549

RESUMO

Amphipathic copolymers such as poly(styrene-maleic acid) (SMA) are promising tools for the facile extraction of membrane proteins (MPs) into native nanodiscs. Here, we designed and synthesized a library of well-defined alternating copolymers of SMA analogues in order to elucidate polymer properties that are important for MP solubilization and stability. MP extraction efficiency was determined using KcsA from E. coli membranes, and general solubilization efficiency was investigated via turbidimetry experiments on membranes of E. coli, yeast mitochondria, and synthetic lipids. Remarkably, halogenation of SMA copolymers dramatically improved solubilization efficiency in all systems, while substituents on the copolymer backbone improved resistance to Ca2+. Relevant polymer properties were found to include hydrophobic balance, size and positioning of substituents, rigidity, and electronic effects. The library thus contributes to the rational design of copolymers for the study of MPs.


Assuntos
Proteínas de Membrana , Poliestirenos , Escherichia coli , Interações Hidrofóbicas e Hidrofílicas , Maleatos/química , Proteínas de Membrana/química , Polímeros , Poliestirenos/química
17.
J Phys Chem B ; 126(5): 1034-1044, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35089036

RESUMO

Lipid nanodiscs can be used to solubilize functional membrane proteins (MPs) in nativelike environments. Thus, they are promising reagents that have been proven useful to characterize MPs. Both protein and non-protein molecular belts have shown promise to maintain the structural integrity of MPs in lipid nanodiscs. Small-angle neutron scattering (SANS) can be used to determine low-resolution structures of proteins in solution, which can be enhanced through the use of contrast variation methods. We present theoretical contrast variation SANS results for protein and styrene-maleic acid copolymer (SMA) belt 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) nanodiscs with and without additional bound or transmembrane proteins. The predicted scattering properties are derived from atomistic molecular dynamics simulations to account for conformational fluctuations, and we determine deuterium-labeling conditions such that SANS intensity profiles only include contributions from the scattering of the MP of interest. We propose strategies to tune the neutron scattering length densities (SLDs) of the SMA and DMPC using selective deuterium labeling such that the SLD of the nanodisc becomes homogeneous and its scattering can essentially be eliminated in solvents containing an appropriate amount of D2O. These finely tuned labeled polymer-based nanodiscs are expected to be useful to extract the size and molecular shape information of MPs using SANS-based contrast variation experiments, and they can be used with MPs of any molecular weight.


Assuntos
Proteínas de Membrana , Nanoestruturas , Bicamadas Lipídicas/química , Maleatos/química , Proteínas de Membrana/química , Nanoestruturas/química , Espalhamento a Baixo Ângulo
18.
Biochem J ; 479(2): 145-159, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35050326

RESUMO

ATP-binding cassette (ABC) proteins play important roles in cells as importers and exporters but as membrane proteins they are subject to well-known challenges of isolating pure and stable samples for study. One solution to this problem is to use styrene-maleic acid lipid particles (SMALPs). Styrene-maleic acid (SMA) can be added directly to membranes, forming stable nanoparticles incorporating membrane proteins and lipids. Here we use Sav1866, a well-characterised bacterial protein, as a proxy for ABC proteins in general. We show that stable and monodispersed Sav1866 can be purified at high yield using SMA. This protein can be used for biophysical characterisations showing that its overall structure is consistent with existing evidence. However, like other ABC proteins in SMALPs it does not hydrolyse ATP. The lack of ATPase activity in ABC-SMALPs may result from conformational trapping of the proteins in SMALPs. Undertaken in a controlled manner, conformational trapping is a useful tool to stabilise protein samples into a single conformation for structural studies. Due to their inability to hydrolyse ATP, the conformation of Sav1866-SMALPs cannot be altered using ATP and vanadate after purification. To achieve controlled trapping of Sav1866-SMALPs we show that Sav1866 in crude membranes can be incubated with ATP, magnesium and sodium orthovanadate. Subsequent solubilisation and purification with SMA produces a sample of Sav1866-SMALPs with enhanced stability, and in a single conformational state. This method may be generally applicable to vanadate-sensitive ABC proteins and overcomes a limitation of the SMALP system for the study of this protein family.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Lipossomos/química , Maleatos/química , Nanopartículas/química , Poliestirenos/química , Staphylococcus aureus/química , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Trifosfato de Adenosina/química , Proteínas de Bactérias/isolamento & purificação , Hidrólise , Bicamadas Lipídicas/química , Estabilidade Proteica , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Solubilidade , Difração de Raios X/métodos
19.
J Mater Chem B ; 10(2): 293-301, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34913463

RESUMO

Fabrication of three-dimensional (3D) surface structures for the high density immobilization of biomolecules is an effective way to prepare highly sensitive biochips. In this work, a strategy to attach polymeric microspheres on a cyclic olefin copolymer (COC) substrate for the preparation of a 3D protein chip was developed. The COC surface was firstly functionalized by the photograft technique with epoxy groups, which were subsequently converted to amine groups. Then monodisperse poly(styrene-alt-maleic anhydride) (PSM) copolymer microspheres were prepared by self-stabilized precipitation polymerization and deposited as a single layer on a modified COC surface to form a 3D surface texture. The surface roughness of the COC support undergoes a significant increase from 1.4 nm to 37.1 nm after deposition of PSM microspheres with a size of 460 nm, and the modified COC still maintains a transmittance of more than 63% at the fluorescence excitation wavelengths (555 nm and 647 nm). The immobilization efficiency of immunoglobulin G (IgG) on the 3D surface reached 75.6% and the immobilization density was calculated to be 0.255 µg cm-2, at a probe protein concentration of 200 µg mL-1. The 3D protein microarray can be rapidly blocked by gaseous ethylenediamine within 10 minutes due to the high reactivity of anhydride groups in PSM microspheres. Immunoassay results show that the 3D protein microarray achieved specific identification of the target protein with a linear detection range from 6.25 ng mL-1 to 250 ng mL-1 (R2 > 0.99) and a limit of detection of 8.87 ng mL-1. This strategy offers a novel way to develop high performance polymer-based 3D protein chips.


Assuntos
Anticorpos Imobilizados/química , Imunoglobulina G/análise , Imunoglobulina G/química , Microesferas , Imunoensaio/instrumentação , Imunoensaio/métodos , Limite de Detecção , Maleatos/química , Poliestirenos/química , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos
20.
J Mol Biol ; 434(2): 167385, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34883118

RESUMO

Human amylin forms structurally heterogeneous amyloids that have been linked to type-2 diabetes. Thus, understanding the molecular interactions governing amylin aggregation can provide mechanistic insights in its pathogenic formation. Here, we demonstrate that fibril formation of amylin is altered by synthetic amphipathic copolymer derivatives of the styrene-maleic-acid (SMAQA and SMAEA). High-speed AFM is used to follow the real-time aggregation of amylin by observing the rapid formation of de novo globular oligomers and arrestment of fibrillation by the positively-charged SMAQA. We also observed an accelerated fibril formation in the presence of the negatively-charged SMAEA. These findings were further validated by fluorescence, SOFAST-HMQC, DOSY and STD NMR experiments. Conformational analysis by CD and FT-IR revealed that the SMA copolymers modulate the conformation of amylin aggregates. While the species formed with SMAQA are α-helical, the ones formed with SMAEA are rich in ß-sheet structure. The interacting interfaces between SMAEA or SMAQA and amylin are mapped by NMR and microseconds all-atom MD simulation. SMAEA displayed π-π interaction with Phe23, electrostatic π-cation interaction with His18 and hydrophobic packing with Ala13 and Val17; whereas SMAQA showed a selective interaction with amylin's C terminus (residues 31-37) that belongs to one of the two ß-sheet regions (residues 14-19 and 31-36) involved in amylin fibrillation. Toxicity analysis showed both SMA copolymers to be non-toxic in vitro and the amylin species formed with the copolymers showed minimal deformity to zebrafish embryos. Together, this study demonstrates that chemical tools, such as copolymers, can be used to modulate amylin aggregation, alter the conformation of species.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Maleatos/química , Conformação Molecular , Estireno/química , Amiloide/química , Animais , Simulação por Computador , Diabetes Mellitus Tipo 2 , Fluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Agregados Proteicos , Espectroscopia de Infravermelho com Transformada de Fourier , Estirenos/química , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...